

# Theoretical Investigation of Compact Microstrip Resonators With Stubs for Patch Antennas

Victor A. Dmitriev and João C. Weyl A. Costa, *Member, IEEE*

**Abstract**—The influence of the stubs on the resonance frequency and on the susceptance slope parameter of the disc resonator is investigated theoretically. It is shown that the stubs may significantly reduce the diameter of the resonator at the expense of bandwidth.

**Index Terms**—Impedance boundary conditions, microstrip antennas, microstrip resonators with stubs.

## I. INTRODUCTION

MICROSTRIP antennas are characterized by small size, light weight, low production cost, conformal nature, and good aerodynamic characteristics [1]. One of the problems of microstrip antenna technology is reduction of the antenna sizes. Solution of this problem is important for many applications: in portable mobile communication equipment, in aircraft, spacecraft, satellite and missile antennas, and arrays. Several methods are used to achieve this aim: substrates with high dielectric constants, shorting posts [2], chip resistors or capacitors embedded in the substrate [3], [4], and narrow lines in the central segment of the rectangular patch resonator [5]. However, the use of substrates with high permittivity leads to lower radiation efficiency, chip resistors reduce the gain of the antenna due to the resistive load absorbing power. Deformation of the shape of a patch suggested in [5] allows one to obtain low antenna dimensions with better radiation performances in comparison with other methods. However, this method is not easily amenable to electrodynamic calculations because of the complex shape of the resonator.

In this paper, we suggest a new method of the microstrip antenna size reduction that consists of the use of microstrip stubs on the periphery of resonators (Figs. 1 and 2) and may be utilized in microstrip antennas of different shapes: circular, ring, rectangular, square, etc. Such structures have also an advantage of simple calculations simulating the comb of stubs by impedance boundary conditions. They are easy to manufacture. One can choose geometrical dimensions and shapes of the stubs (Fig. 3) in order to optimize characteristics of the antennas.

## II. THEORY

### A. Geometrical Dimensions of the Disc Resonator

The equation that defines the resonance frequencies of the disc resonator with stubs on a dielectric substrate is [6]

$$J'_n(k_d R) - \alpha J_n(k_d R) = 0 \quad (1)$$

Manuscript received November 9, 2000. This work was supported by CAPES and by CNPq.

The authors are with the University Federal of Para, CEP 66075-900 Belem-PA, Brazil (e-mail: victor@ufpa.br).

Publisher Item Identifier S 0018-9480(02)00747-0.

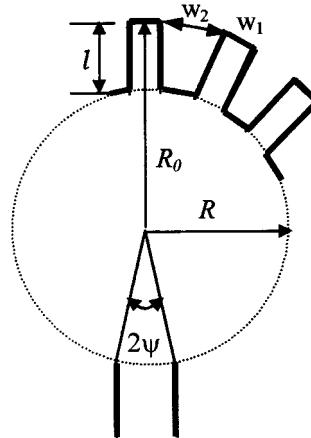



Fig. 1. Microstrip resonator with stubs on its periphery.

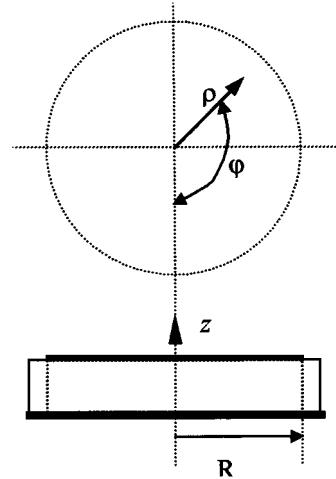



Fig. 2. Uniform part of the resonator with stubs (the impedance boundary conditions are at  $\rho = R$ ).

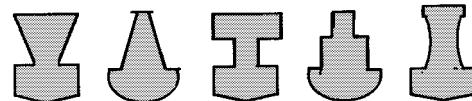



Fig. 3. Possible geometries of the stubs.

where  $J_n(\bullet)$  and  $J'_n(\bullet)$  are Bessel functions of the first kind,  $n$ -orders, and its derivatives, respectively,  $R$  is the radius of the resonator without stubs (Fig. 2),  $K_d = \omega \sqrt{\epsilon_0 \epsilon_d \mu_0}$ ,  $\mu_0$ , and  $\epsilon_0$  are permittivity and permeability of free space,  $\epsilon_d$  is permittivity of the dielectric,  $\alpha$  is the dimensionless parameter describing the comb of stubs, which is defined by the expression

$\alpha = -jZ_dY_s$ , and  $Z_d = \sqrt{\mu_0/(\varepsilon_d\varepsilon_0)}$  and  $Z_s = 1/Y_s$  is the boundary impedance on the radius  $R$  of the resonator.

The boundary conditions on the cylindrical surface of the resonator at  $\rho = R$  are written as follows:

$$H_\varphi = -Y_s E_z \quad E_z = -Z_s H_\varphi \quad (2)$$

where  $E_z$  and  $H_\varphi$  are the components of electromagnetic field in the resonator at  $\rho = R$  (Fig. 2),  $Y_s$  and  $Z_s$  are the admittance and impedance of the disc cylindrical boundary, respectively. With  $\alpha = 0$  (it corresponds to  $Y_s = 0$ ), (1) reduces to the known one for the disc resonator with magnetic wall boundary conditions.

With this approach, the real discrete comb structure is replaced by a distributed smooth boundary with impedance properties. The averaged input admittance of the comb structure is defined as

$$Y_s = jY = jY_l \left( \frac{K}{1 - l/R_0} \right) \operatorname{tg} \left( \frac{2\pi l}{\lambda_g} \right) \quad (3)$$

where  $Y_l$  is the characteristic admittance of the stub,  $l$  is its length,  $\lambda_g$  is the wavelength in the microstrip line that forms the stub, and the coefficient  $K$  is defined at  $\rho = R_0$  as follows:

$$K = \frac{w_1}{(w_1 + w_2)}.$$

The dimensions of the comb  $w_1$  and  $w_2$  are shown in Fig. 1.

### B. Approximate Evaluation of the Bandwidth of the Disc Antenna With Stubs

The influence of the stubs on the bandwidth of the antennas can be analyzed using a resonator model. It is well known that the bandwidth of the microstrip antennas is defined mainly by impedance matching. Considering the equivalent network of the resonator in the vicinity of the operating frequency, we may write down the input admittance of the resonator as follows:

$$Y_{\text{in}} = G_{\text{in}} + jB_{\text{in}} \quad (4)$$

where  $G_{\text{in}}$  is the shunt conductance and  $B_{\text{in}}$  is the shunt susceptance of the resonator. The input susceptance around the resonant frequency  $\omega_0$  at the reference terminals of such a resonator with a microstrip line feed (Fig. 1) can be written in the following form [7]:

$$B_{\text{in}} = 2B' \left( \frac{\omega - \omega_0}{\omega_0} \right) \quad (5)$$

where  $\omega$  is the frequency and  $B'$  is the susceptance slope parameter of the resonator for the point  $\omega = \omega_0$ , which is defined as

$$B' = \frac{\omega_0}{2} \frac{\partial B_{\text{in}}}{\partial \omega} \Big|_{\omega=\omega_0}. \quad (6)$$

The bandwidth of a microstrip antenna depends on the properties of the microstrip resonator and of external matching networks. The frequency properties of the antenna without matching networks are defined by the loaded  $Q$ -factor of the resonator

$$Q_l = \frac{B'}{G}. \quad (7)$$

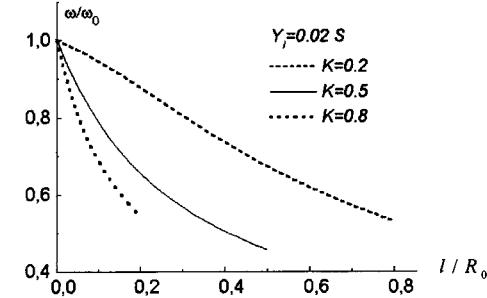



Fig. 4. Normalized frequency  $\omega/\omega_0$  as function of the normalized length of the stubs  $l/R_0$  with  $K$  as a parameter.

Therefore, calculating the susceptance slope parameter  $B'$ , we can approximately evaluate the bandwidth of the antenna. The susceptance slope parameter of our problem is [6]

$$B' = -\frac{\pi}{6Z_d \sin \psi} \times \left[ k_d R \frac{J_1''(k_d R)J_1(k_d R) - [J_1'(k_d R)]^2}{[J_1(k_d R)]^2} - \gamma \right] \quad (8)$$

where  $\gamma = \omega_0 Z_d (\partial Y / \partial \omega)$ ,  $Y = Y_s/j$ , and  $2\psi$  is the angle width of the feeding line (Fig. 1). For short stubs, the parameter  $\gamma$  may be expressed as follows:

$$\gamma \approx \omega_0 \left( \frac{K}{1 - l/R_0} \right) Z_d Y_l \sqrt{\varepsilon_0 \varepsilon_d \mu_0 l}. \quad (9)$$

The frequency dependence of  $Z_d$  in (8) and (9) is neglected. Notice that the parameter  $B'$  defined above can be used for synthesis of external matching networks [7] to improve the bandwidth of the antenna.

## III. NUMERICAL RESULTS

In order to compare electrical characteristics of the resonator with open-circuited stubs with those of the resonator with magnetic-wall boundary conditions, we will use the following method. Fixing the radius of the disc resonator  $R_0$  without stubs, we calculate its parameters. For the new resonator, we fix the length of the stubs  $l$  preserving the sum  $(R + l) = R_0 = \text{const}$ , where  $R$  is the radius of the uniform part of the resonator with stubs (Fig. 1). Therefore, the whole area of the dielectric substrate occupying by the above two resonators is equal. Calculating parameters of the new resonator for different  $l$ , we can evaluate the influence of the stubs on the properties of the resonator.

Notice that, in this paper, we consider resonators with uniform stubs, therefore, the maximum length of the stubs for small  $w_1$  can be limited. It is defined by the condition  $l_{\text{max}}/R_0 = 1 - K$ , which corresponds to joining adjacent stubs at  $\rho = R$ . The region of the possible values of  $l/R_0$  in Figs. 4 and 5 is restricted according to this condition.

The following parameters have been used for numerical calculations:  $w_1/(w_1 + w_2) = 0.2, 0.5$ , and  $0.8$ ;  $\varepsilon_d = 2.2$ ;  $Y_l = 0.0125, 0.02, 0.05$  S. The normalized frequency  $\omega/\omega_0$  and the normalized susceptance slope parameter  $B'/B'_0$  as function of the normalized length of stubs  $l/R_0$  with  $K$  as a parameter is shown in Figs. 4 and 5 and with  $Y_l$  as a parameter in Figs. 6 and 7.  $B'_0$  and  $\omega_0$  are the susceptance slope parameter and the

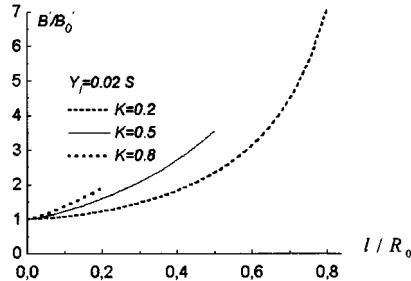



Fig. 5. Normalized function  $B'/B'_0$  as function of the normalized length of the stubs  $l/R_0$  with  $K$  as a parameter.

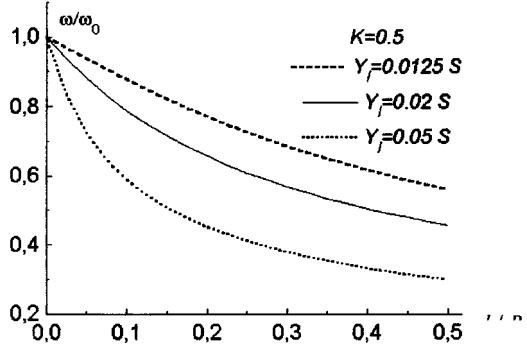



Fig. 6. Normalized frequency  $\omega/\omega_0$  as function of the normalized length of the stubs  $l/R_0$  with  $Y_t$  as a parameter.

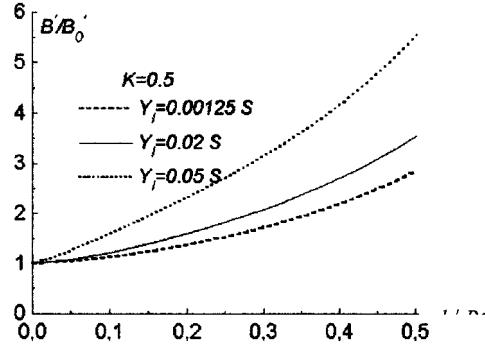



Fig. 7. Normalized function  $B'/B'_0$  as function of the normalized length of the stubs  $l/R_0$  with  $Y_t$  as a parameter.

resonant frequency, respectively, of the conventional disc resonator with the radius  $R_0$ . The behavior of the curves on Figs. 4 and 6 demonstrates explicitly that the resonant diameter of the resonator decreases when the length and the width of the stubs increase and the slots between the stubs are diminished. The diameter of the resonator can be reduced 2–3 times by this method. It gives a hope that using the new type of resonators, the dimensions of the corresponding microstrip antenna can be reduced. However, the susceptance slope parameter for the resonator with stubs increases (Figs. 5 and 7), which corresponds obviously to a narrower bandwidth of the antenna.

#### IV. CONCLUSIONS

Using the impedance boundary conditions, the disc microstrip resonator with stubs for application in patch antennas

has been investigated theoretically. In order to calculate its parameters, we have used the combined electrodynamic and circuit theory method. The results of numerical calculations show that the dimensions of the resonator may be reduced at the expense of the bandwidth of the antenna.

The following steps in the analysis will consist of the evaluation of the radial dependence of the input resistance of the resonator with stubs in order to define the point of microstrip-line or coaxial-line feed and of the radiation pattern calculation. Further optimization of the shape of the stubs can perhaps provide larger bandwidth of the antennas.

#### REFERENCES

- [1] C. A. Balanis, *Antenna Theory*, 2nd ed. New York: Wiley, 1997.
- [2] R. B. Waterhouse, "Small microstrip patch antenna," *Electron. Lett.*, vol. 31, no. N17, pp. 604–605, 1995.
- [3] H.-T. Chen, "Compact circular microstrip antenna with embedded chip resistor and capacitor," in *Int. IEEE AP-S Symp. Dig.*, vol. 3, Atlanta, GA, June 21–26, 1998, pp. 1356–1359.
- [4] J.-H. Lu, C.-L. Tang, and K.-L. Wong, "Slot-coupled compact broadband circular microstrip antenna with chip-resistor and chip-capacitor loadings," *Microwave Opt. Technol. Lett.*, vol. 18, no. N5, pp. 345–347, Aug. 1998.
- [5] N. Fayyaz and S. Safavi-Naeini, "A new design for a downsized patch antenna," in *Int. IEEE AP-S Symp. Dig.*, vol. 4, Atlanta, GA, June 21–26, 1998, pp. 2108–2111.
- [6] V. A. Dmitriyev, "A theoretical study of microstrip ferrite resonators with impedance boundary conditions," *Proc. Inst. Elect. Eng.*, pt. H, vol. 144, no. N5, pp. 297–300, Oct. 1997.
- [7] J. Helszajn, *Nonreciprocal Microwave Junctions and Circulators*. New York: Wiley, 1975.

**Victor A. Dmitriev** was born in Russia, in 1947. He received the M.Eng. degree in electrical and electronic engineering and the Dr.Sc. degree from the Moscow State Technical University (MSTU), Moscow, Russia, in 1971 and 1977, respectively.

From 1973 to 1977, he was a Researcher and an Associate Professor at MSTU. In 1989, he was a Visiting Researcher with Manchester University, Manchester, U.K. From 1995 to 1997, he was a Visiting Professor with the Army Politechnical School (ESPE), Quito, Ecuador. He is currently a Visiting Professor at the University Federal of Pará, Belem-PA, Brazil. His main research interests include microwave and millimeter-wave passive components, applied electromagnetics, modeling, and simulation of high-frequency circuits, theory of symmetry, application of group theory to electromagnetic problems, and complex and composite media. He has authored over 100 scientific papers. He co-authored *Computer Aided Design of Microstrip Ferrite Devices* (Moscow, Russia: Moscow State Tech. Univ., 1986), *Nonreciprocal Microwave Junctions Using Ferrite Resonators* (Moscow, Russia: Radio y svyaz, 1989). He holds eight patents in the field of microwave devices.



**João C. Weyl A. Costa** (S'94–M'95) received the B.Sc. degree from the Universidade Federal do Pará, Belem-PA, Brazil, in 1981, the M.Sc. degree from the Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, in 1990, and the Ph.D. degree from the Universidade de Campinas, Campinas SP, Brazil in 1994, all in electrical engineering.

From 1982 to 1983, he was with ANATEL, Fortaleza CE, Brazil. From 1984 to 1986, he was with FUNTELPA, Belém PA, Brazil. He is currently with the Universidade Federal do Pará. His current research is focused on the analysis of systems and devices for applications in optical and wireless communications networks.